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Abstract: 

While vetiver hedgerows have demonstrated a marked capacity for recharge of ground water, 
the explanation is not satisfactory. Current viewpoint is that the shoot part  of the vetiver hedgerow 
slows down the surface flow,  filters out the  sediments, and diverts the flow sideways. These effects 
may explain part  of the increased water recharge. A complete explanation of the recharge has to 
consider and model the subsurface architecture of vetiver, its deep dense vertical root system.

In the vadose zone, hydraulic conductivity is highly dependent on the water content which 
in turn is dependent on the source of water like rainfall. The conventional matrix flow model, based 
on capillarity, is unable to explain fast recharge of ground water. Preferential flow based on films of 
water on macro-pores (Nimmo, J.R., 2010, Theory for Source-Responsive and Free-Surface Film 
Modeling of Unsaturated Flow: Vadose Zone Journal, v. 9, no. 2, p. 295-306  ) has been put forth to 
explain the  fast recharge.  The film model states that  substantial water input at the surface, like 
rainfall or irrigation,  moves down at a rapid and constant speed as films on the vertical surfaces of 
macro pores. At a particular three dimensional parcel of soil, the area available for film flow, the 
Facial Area Density, is the vertical surface of all macro-pores in the parcel. 

While vetiver roots may age and disintegrate to form vertical macro-pores, it is the surface 
of  the  roots  themselves  that  provides  a  high  Facial  Area  Density  for  regions  under  a  vetiver 
hedgerow. The Facial Area Density can be related to the Root Length Density. For vetiver this 
surface  is  vertical  and long.  Hence  the  phenomenal  capacity  of  vetiver  hedgerows to  increase 
ground water recharge can be attributed to the high vertical surface area provided by the vetiver 
roots for film flow.  The shoot parts of the plant, start the film flow from the surface water and the 
myriad long vertical  roots  of  vetiver,  connected to  the  shoot,  seamlessly  transfer  the  water  as 
surface film at a fast rate to the deeper regions. The film flow over the vetiver roots will be modeled 
qualitatively  and  computationally.  We   give  a  satisfactory  model  for  the  most  important 
characteristic of vetiver- its phenomenal ability for ground water recharge.  
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1 INTRODUCTION
Vetiver  hedgerows have  demonstrated a  remarkable capacity  to increase  infiltration and 

recharge  ground water.  The effectiveness of vetiver for  increasing ground water and soil moisture 
is quantified by Deesaeng et al. 2006. However, the study does not go into the mechanisms of  this 
quantitative improvement. Current viewpoint is that the shoot part  of the vetiver hedgerow slows 
down the surface flow,  filters out the  sediments, and diverts the flow sideways. These effects may 
explain part  of the increased water recharge. A complete explanation of the recharge has to consider 
and model the subsurface architecture of vetiver, its deep dense vertical root system.  Smeal and 
Truong 2006, had started an ambitious program in this direction.

Several studies (Metcalfe et al. 2003, Hussein et al. 2007) have focused on the backwater 
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properties.  But  we have  not  come across  any analysis  that  combines the  effects  of  the  vetiver 
hedgerow, the backwater,  the vetiver root zone and the infiltration. Without such an analysis, it is 
difficult to quantify the effectiveness of vetiver to increase ground water recharge.

In this study we have modelled the vetiver hedgerow, the backwater, the preferential  flow as 
film on the roots and diffusion in the soil mathematically. Parameters of the component models 
have been taken from reported studies as far as possible. The interplay and interaction between 
these components have been captured by a computational model. The computational model gives 
results that agree reasonably well with experimental data on backwater dynamics and ground water 
recharge. 

The main finding of our study is that  the preferential flow as laminar film on the dense 
vertical roots of vetiver  is the most important contribution of vetiver for ground water recharge, 
directly through increased fast infiltration and indirectly through absorbing the backwater when the 
rain has stopped.

2 MATERIALS AND METHODS

2.1 MATERIALS

Soil (Silt loam Walla Walla) parameters. (Head units cm of water)

Parameter description value units source

Saturated moisture content  s 0.39 Rossi, Nimmo 1994

Residual moisture content  r 0.07 Rossi, Nimmo 1994
r Used in simulation 0.04

Owen dry suction  d 1.0×107 cm Rossi, Nimmo 1994
i   fitted for  3­Parameter Sum model 104.6 cm Table 2 (,,)
o  fitted for  3­Parameter Sum model 35.6 cm Table 2 (,,)

 fitted for  3­Parameter Sum model 0.61 Table 2 (,,)

 computed  for 3­Parameter Sum model 0.04

c computed for  3­Parameter Sum model 2.8005×10−3

K s  Saturated hydraulic conductivity 345.6 mm d−1 Chen, Payne 2001

Vetiver Hedge, Shoot and Root parameters

Parameter description value units source

Vetiver hill (clump) diameter 12 cm Inthapan, Boonchee 2000

No of tillers per hill 10  ­ 35 cm ,,

Hill height 89 ­ 106 cm ,,

Spacing of hills in a row 10 ~ 20 cm ,,

Spacing between rows 30 cm ,,



Root Length density (RLD)  <1 cm−2  Tscherning et al. 1995

Root Length density  Lv for grasses 2×105 m−2 Gregory 2006

Lv Used in simulation 6×105 m−2

Average root radius R 330 m Hengchaovanich, D, 2003

Film thickness  hc 100 m

Average velocity across the film   V c avg 1.5×10−4 m s−1

Vetiver shoots  N vs 0­100 m−1

Vetiver shoot radius  r v 1.2 mm

Hedge width  wh 2.4 cm

Simulation (NetLogo) Parameters

Parameter description value units

No of patches in x direction 100

No of patches in y direction 75

Patch (square) dimension   z 0.4 cm

Tick time  t 4 s

Simulated Field

Fig.  1: Topology and dimensions of the field modeled



Soil Conductivity and Diffusivity from simulation model

2.2 METHODS

2.2.1 Steady Flow
The flows can be studied by a two dimensional model. The flows are generally (Nimmo 

2005) transient but then the analysis and theory become complicated. Steady flow simplifies the 
issues and provides valuable insights into the surface, diffuse and preferential flow.  For steady 
flow, the source and sinks of the flow have to be carefully specified. For surface flow, it is assumed 
that  a  hinterland  with area that  can  be  varied provides the  inflow from rain  that  falls  on the 
hinterland. The sink for infiltrated water is provided by a horizontal drain  4 cm from the bottom 
(fig. 1). The steady flow state is obtained after an initial period when the moisture stores and fluxes 
are built up. Once the fluxes and contents have stabilized, the  variables are measured to understand 
and characterize the model.   
 
2.2.2 Surface Flow

Hydraulic Radius reduction by vetiver hedgerow
The Manning equation for open channel gravity flow ( Engineering Toolbox 2011) is used to 

model the surface flow. The Manning formula (Veissman et. Al 2003, Engineering Toolbox 2011) 
states:

 

  v=
k
n

Rh
2/ 3. S1/2                  Rh=

A
P

   Rh      ̴̳  hm  for wide channels

where:

v cross-sectional average velocity (m/s) P wetted perimeter ( m ).

Fig. 2: From simulation model based on Chen  
and Payne 2001

Fig. 3: From simulation model based on  
Rossi and Nimmo 1994



k conversion constant equal to  1.0 A cross sectional area of flow ( m2 )

n Manning roughness coefficient  ( s /m1/3 ) Rh hydraulic radius ( m )

S slope of the  surface ( m /m ) hm Height of water ( m )

The  Manning equation  has  been  used by  (Metcalfe  et  al  2003 )  to  study  the  hydraulic 
characteristics of vetiver hedgerows in deep flows. Deep flows can occur on channel banks. Vetiver 
hedgerows planted across fields for soil and moisture conservation encounter sheet flow (Veissman 
et al. 2003) most often and not deep flows. Dalton et al 1996, attribute the effect of the vetiver 
hedgerow into Manning roughness coefficient n  and fit an empirical equation to the experimental 
data. In this work, the vetiver hedgerow is modeled within the Manning formula into the hydraulic 
radius Rh instead of the roughness coefficient n .  The hydraulic radius is  a characterization of 
an open channel flow as if it was a circular pipe with a known actual radius. The physical meaning 
is that stationary surfaces cannot have water velocities on them to be other than zero. Viscosity then 
limits  the velocity water can have as its distance from the surface increases. In our model, each 
vetiver tiller shoot offers two contact lines of zero velocity to the shallow flow. In addition, the 
width of the shoot reduces the area available to the flow but also reduces the contact length along 
the bottom of the channel.   

For vetiver hedgerow (shown in Fig. 4) 

Rhv=
hv 1−2 Nvs rv

12 N vs hv−r v
                  (1)  

Rhv  ̴̳  
1−2 N vs rv

2 N vs

             

(when hv≫rv , 2 N vs hv≫1 )

Rhv Hydraulic radius for vetiver hedgerow [ m ] rv radius of vetiver shoot [ m ]

hv Height h of water along vetiver shoot [ m ] A hv 1−2N vs r v

N vs Number of vetiver shoots per m [ m−1 ] P  12 N vshv−rv 

For wide open channels with no vetiver, the hydraulic radius  Rhv reduces to hv as is seen 

by setting N vs to 0.  Interestingly,  Rhv is independent of hv in the approximation.  The input 
flow q ( m3 s−1 ) is known and equated to A v . The height of water for wide channels can be 
easily computed. For the vetiver hedgerow, the height  hv can be computed using a numerical 
method. 

The vetiver shoot takes away some contact length from the bottom invariably and provides 
two vertical contact lines. The wetted perimeter will  increase unless the flow is so low that the 
height is less than the radius of the shoot. Unless the radius is zero, the cross sectional area for flow 
will decrease with vetiver. So it is to be expected that the hydraulic radius will decrease with  a 
vetiver  hedgerow  across  the  flow path.  Consequently  the  average  velocity  would decrease  and 
hence the height of water level at the hedgerow will increase. 

Backwaters

Fig.  4: Vetiver hedgerow in shallow flow



If the water level at the vetiver hedge is increased, the level behind it should also increase. 
The  model   illustrated  in  (Dalton  et  al  1996,  Fig  5)  shows  a  hydraulic  jump  between  two 
hedgerows.  They also indicate that the height difference before and after the hedgerow can be 
modeled as a submerged orifice. While the submerged orifice can account for the increased height 
behind it, the velocity through the orifice has to be greater than the normal velocity to maintain the 
flow rate. 

Consider a micro dam wall in the path of the steady flow. At distances far behind the dam 
wall or after the wall, the water height would be given by the Manning equation with normal Rh . 
Immediately behind the dam, we can assume a triangular (in the two dimensional picture) volume 
of dead water with a flat horizontal surface line extending from the top of the dam wall to the 
sloped surface. As a first approximation, the water flow can be assumed to be flat with the same 
height over this dead water.

In our model for the vetiver hedgerow (shown in Fig. 4) hv  is the increased height at the 
vetiver hedge    and hm  the heights far behind the hedge. The height of the dead water is then 

hv – hm .  The backwater length is then given by  

bl=hv – hm/ S                                                                               (2)

The model can also be viewed as if the actual height of water increases from hm  at the 
start of the backwater to hv  at the vetiver hedge. The other model, where the flow is  at height of 

hm  everywhere  over  a  triangle  of  immobile  backwater   is  better suited  for  a  dam  wall 
obstruction.

2.2.3 Diffusive Flow
In the vadose zone, hydraulic conductivity is highly dependent on the water content which in 

turn is dependent on the source of water like rainfall. The conventional matrix flow model, based on 
capillarity, can model the flow in regions other than that below the vetiver hedgerow.  The vetiver 
hedgerow may increase the water content both on the surface and under the hedgerow, but the water 
content and fluxes at other regions are governed by the matrix diffusion equations.  

Fig. 5: Backwater formation behind a vetiver hedgerow



  = pz  + z  +            

pz =  z2−z1 z / z1        D  = K

d
d

q D = −K 

d
d z

= 

−K [ z2−z1

z1

1
d
d z ] = −K 

z2

z1

−D
d 
d z

In head units
pz pressure from surface water at z  m z potential due to gravity at z  m

 matric potential m  total potential m

qD diffuse flow flux density m /s  volumetric moisture content m3 /m3

K Hydraulic conductivity m /s D Hydraulic diffusivity m2/s

z2 Water surface level m z1 Land surface level m

How to attain steady diffuse flow

First we rewrite the diffuse flow flux density with q D and the z axis downwards. A term 
for the rate of change of moisture in the volume element is added too.

q D   = K

z2

z1

−D

d
d z

 v
d 
d t

q i ,n ,tt = qo ,n−1 , t

q i ,n ,tt  = K , n ,t

z2

z1
– D ,n ,t

n1, t−n ,t t

 z
 z

n , tt−n ,t

 t
    (3) 

q i ,n ,t input at element n   time t m /s . qo ,n , t output at element n  time t m /s .

At time t t  , all parameters (  , q i , qo ) at time t  are known at all elements. Then 
q i  at  each  element at the new instant is set from the qo of the element atop it at the previous 

Fig.  6: Vertical diffusion. Pressure from water  
over soil.



instant.  Then,  using  equation  3, n ,t t  can  be  computed.  Once    is  known  K  is 
calculated using the Method 2 of Chen and Payne 2001. D  is calculated employing equations 
from Rossi and Nimmo 1994. Finally, qo  of the element can be computed.

2.2.4 Preferential flow 
The vadose zone below the vetiver hedgerow, cannot be adequately modeled as a matrix for 

diffusive flow.  The porosity of this region will decrease as the roots fill up the space and  according 
to the diffusive matrix model, the diffusion can only decrease. Even if we say that vetiver roots will 
lead  to  anisotropic  hydraulic  conductivities  with  vertical  conductivity  larger  than  horizontal 
conductivity, the vertical conductivity would still be less than the one without the roots.

(Deesaeng et al 2006 Table 1, maize) show that vetiver hedgerows reduce the runoff from 
12.9% to 5.7% and correspondingly increase the water recharge from 30.8 % to 37 %.  Since the 
groundwater increase matches the reduction in runoff and runoff is a fast process, a comparable fast 
process is needed to explain the ground water recharge. 

Preferential  flow based on films of water on macro-pores (Nimmo, J.R., 2010) has been put 
forth to explain  fast subsurface flow processes.  The film model states that substantial water input 
at the surface, like rainfall or irrigation,  moves down at a rapid and constant speed as films on 
continuous  vertical  surfaces.  This  model  could  explain  many  observations  on  fast  recharge  of 
ground water by heavy rains that could not be accounted for by  matrix diffusive flow.  

The  vertical  surfaces  are  the  flat  surfaces  of  parallel  plane  fractures,  inner  surfaces  of 
macropores made by earthworm holes or decayed roots, and outer surface of roots.  The laminar 
film flow theory (Nimmo, J.R., 2010) for flat surfaces is first presented.   

The velocity at the outer surface of the film and the film thickness, using momentum balance 
are related by:

V f max=
1
2

g


hf
2 V f avg=

2
3

V f max                                                            (4)

The source responsive flux density qf s  and water content  f s  are related to the Facial Area 
density M , velocity and thickness.

qf s =    M V f avg hf  =  
1
3

g


hf
3 M             f s=M hf

Experimentally it is observed  (Nimmo, J R, 2010)  that both the maximum velocity and the 
maximum thickness  vary  within  a  small  range.  The  empirically  determined nominal  maximum 
transport speed for continuous supply conditions (Nimmo, J R, 2010) is  1.5×10−4 ms−1 and so 
the  average  maximum  velocity  for  flat  films  is  1.0×10−4 ms−1 .   From  equation  (4),  the 
maximum thickness is calculated as  5.53m .   Assuming that  all  laminar film flows on flat 
surfaces have these velocities and thickness uniformly, the maximum flux can be written.  The 
maximum preferential flux   modulated  with an active area fraction gives the actual flux density.

qf smax=M V u hf u    qf s=f M V u hf u

where:

g acceleration due to gravity 9.81 ms−2  kinematic viscosity (water) 
1.0×10−6 m2 s−1

V f max Maximum velocity (at surface) m s−1 hf thickness of the film m

V f avg Average velocity over the film m s−1 M Facial area density (FAD) m2/m3



qf s Flat film flux density m3 s−1/m2 f s Flat film moisture  m3/m3

V u Average uniform velocity 
1.0×10−4 ms−1

V u hu property of earth and water 
5.531×10−10 m2 s−1

hf u uniform film thickness 5.531m f active area fraction

M hf u Cross sectional area density of laminar 
films on flat vertical surface m−1 m

hf u Cross sectional area density per unit 
FAD for flat surface m

It is useful to identify  M hf u  [ m−1 m ] as the cross sectional area density of the films on flat 
surfaces.

Surface Film Flow on root

The velocity and thickness of laminar film over a  vertical cylinder are given in (Bird et al 2002, 
Ruyer-Quil et al 2008) as

vcr=
g
 [ 1

2
Rhc

2 ln r
R

– 1
4
r 2−R2]  

vc max=
g
 [ 1

2
Rhc

2 ln
Rhc

R
–

1
4
2Rhchc

2]
                                                          (5)

When the film is thin ( h≪R ),  (  Bird et  al 
2002) have given it as an exercise to prove that:

vc avg=
2
3

v c max                                (6)

  

where (see Fig:  7)

R Radius of root  m hc Radial thickness of film  m

r point within film ( RrRhc ) m vcr Downward velocity at r m/ s

vc max The maximum velocity at Rhc vc avg Average velocity across the film

Root Length Density
The Root Length density in a volume is the total length of roots in the volume divided by the 

volume. With anisotropic root systems, like that of vetiver, it is feasible to treat it as a vector.  Then 
the Root Length Density in the vertical direction is the same as the number of roots per unit area in 
the horizontal plane.

Lv z=N vr  qc s = Rhc 
2
−R2

N vr vc avg                     (6b)

Fig. 7: Thin film on a root



where:
Lv z Vertical Root length density m−2 N vr Number of roots per sq m  m−2

qc s preferential flux density on roots m s−1

Facial Area Density
The Facial  Area Density is the total  vertical  area available  for film flow divided by the 

volume in which it is calculated. It is same as the total contact length over a unit area. Vetiver sports 
vertical roots with very little spread  (Lavania 2003)  and so the normal RLD can be taken as the 
vertical root length density.

M = 2R N vr = 2R Lv z                                                                         (7)

Simplified Film flow over roots
With the maximum average film velocity taken as 1.0×10−4 ms−1 , and vetiver root radius 

R taken as 0.33 mm  equation (5) can be numerically solved to get hc as 5.516 m . From 
this   qc s  is computed (6b)  as 59.8 mm d−1  with N vr  = 60×104  m−2  and vc avg  

1.0×10−4 m s−1 . This is much lower than the K s  for Walla Walla (345 mm d−1 ).  So we 

have assumed hc  to be  100 m  and vc avg to be 1.5×10−4 m s−1 . This film thickness 
matches the maximum reported in Nimmo 2010. The maximum and not average velocity is taken as 
the film achieves the maximum velocity in 5 m  and is expected to remain at that value for the 
rest 95 m . With these assumptions qc s gets respectable at 1857   mm d−1 (5 times K s

for Walla Walla).

2.2.5 Fate of Backwater
The backwater length is calculated following the model that there is a triangular volume of 

dead water behind the hedgerow over which the water flows with the normal Manning velocity and 
height. It is difficult to quantify the effect of the backwater. We calculate how much time it will take 
for the rain input to fill the backwater and for the backed water to infiltrate into the ground through 
diffusive and preferential flows.

Qb  =   Qd  + Qs     tbf  = Qb /qr   

The  t bi  is  calculated  by  assuming  a  partition  between  the  column  over  the  vetiver 
hedgerow and the remaining triangular backwater. The flux density in the column is the sum of the 
diffusive and preferential mechanisms. In the triangular volume, diffusion alone is active. In time 

t bi  the column will infiltrate more than the water in its partition.  The deficit is equated to the 
water remaining in the triangular partition after the same time. This leads to a quadratic equation in 

t bi :

Hd−qd tbi 
2

2 S
 = qsqd tbi−H sw h ; H s = hv−hm ;  H d = H s−wh S       (8)

Qb Water in backwater cm2 Qd Part of Qb that diffuses in cm2

Qs Part of Qb  preferentially in cm2 qd Diffusive flux density cm s−1

H s Backwater height  cm H d Height of water in triangular area. cm

qs Preferential flow flux density cm s−1 bl Backwater length cm

wh Width of hedgerow cm tbi Time to fully  infiltrate Qb s



qr Surface  inflow (rain)  cm2 s−1 tbf Time for inflow to fill Qb  s

2.2.6 Agent Based Simulation
Agent  Based modelling and simulation  has found favour  with hydrologists  (Cook et  al. 

2008, Sapkota, P, 2010) as the simulation can bring out emergent, unexpected or hard to imagine, or 
mathematically intractable behaviour from simple mathematical models of the components. Netlogo 
(Wilensky 1999) is a preferred ABM tool for wide range of domains including biology, physics, 
sociology and economics. In this study, we have used  the patches as finite elements representing a 
soil or surface volume. The other active element, the turtle, is used to model, water for example, 
that moves from patch to patch (Sapkota, P, 2010). However, we feel that the quantity of water that 
moves is not a constant and it is easier to manage the simulation with these variable quantities being 
passed from patch to neighbour patch. Thus we used a Finite element method with NetLogo. 

3 RESULTS
The water balance mandates that the rain would be expended as infiltration into the ground, 

surface  runoff  and  increase  in  storage  on  the  surface.   We  ignore   evapotranspiration,  unlike 
Deesaeng et al, 2006,  as its effect is seen only in the long term. A vetiver hedgerow affects the 
water balance in several ways. Firstly it will reduce the surface runoff velocity at the hedge, create a 
heightened backwater  behind the  hedge.  The  increased height  contributes  to  higher  infiltration. 
According to our model, the vetiver hedgerow increases infiltration through preferential flow as 
surface  film on the roots.

The quantities that can be varied are   N vs  the vetiver shoot density,  Lv or N vr  the 
vetiver root length density, the rain by varying the hinterland and the rain fall density, and the slope 
of  the  surface  S .  The  quantities  to  be  monitored  are   infiltration  both  by  diffusion  and 
preferential flow. The diffuse and preferential flow flux densities are important quantities for the 
effectiveness of vetiver  hedgerows. The  backwater   formed due  to   water level  difference at  a 
vetiver hedgerow is also to be characterized and interpreted.  The surface runoff is not found to be a 
useful measure as it is invariably close to the surface runin. Alternately, the surface runin could be 
reduced so much that there is no runoff at all.

The gist of our findings is that the preferential flow flux density is about 5 times that of the 
diffuse flow flux density.

3.1 Surface flow

Height difference at hedgerow
Fig.  8 shows how the vetiver hedgerow increases the water height. Interestingly, the water 

level at the hedge is linear to the flow whereas the level far behind is not.  It is seen that hv and 
hm

5 /3  are linear to the flow rate q  at high  rates. Fig. 9 shows how the backwater length and 
volume vary.

We compare (table 1) the experimental data from Hussein et al. 2007 with interpolated data 
from simulation. While the water levels and backwater lengths are comparable, the inflows differ by 
an order of magnitude. Hussein et al. manage the same level at the hedgerow from a lower level far 
behind. This probably means that their vetiver hedgerow ( 0.3×0.3 m2 ; 4300 stems m−2 ; stem 
radius 4.5 mm) is more dense than ours.

Backwater
In  this  model,  unlike  (Dalton  et  al  1996,  Fig  5),  there  is  no  hydraulic  jump behind a  vetiver 
hedgerow. The picture as seen in Fig.  1 shows a flat surface behind a hedgerow very similar to 
(Hussein  et  al  2007 Fig 2).    The  length  of  the  backwater  and the  volume impounded in  the 
conceptual dead water zone are plotted  in fig.  9. It is seen that the  volume of water impounded 



behind the vetiver increases as q2 at high flow regimes.

Source Water height at Backwater Inflow

hedgerow
hv cm

far behind
hm  cm

length
cm

m2 s−1

Hussein et al 2007 2.7 0.8 50 0.001

Reduced hydraulic radius 
model. Simulated.

2.45 1.22 49 0.025

3.13 1.45 62.6 0.033

Interpolated 2.7 1.31 54 0.028

Table 1: Comparison of experimental data with simulated data for backwater height and length.  
Vetiver density 80  for simulated model

3.2 Diffusive and Film Flow
Figs (10, 11 )  show  the total water that diffused over the surface of the model  and over the 

vetiver patch as preferential flow. The diffused volume in 10 minutes varies little around 10 cm2  
however  the  rain  or  the  hedgerow denseness  varies.  The  diffused volume  increases  from 9.98 

cm2  for  rain  at  5  cm/hour  to  11.25  cm2  for  rain  at  30  cm/hour  (12%  increase).  The 
preferential flow volume is at  3.12 cm2  with  RLD at  60×104  m−2 .  As expected of a 
source responsive flow, it does not vary with the rain in this range. The area available for diffusion 
is 40 cm whereas preferential flow manages only 2.4 cm. Thus the diffusive flux density qd  is 

0.469×10−3 cms−1 and preferential  flux  density  qs  is  2.16×10−3 .  It  is  seen  that  the 
preferential flux density is  4.6 times that of the diffusive flux density.  That is why the quantity 
diffused over a  wide area of 40 cms is comparable to the quantity  that infiltrated through a mere 
2.4 cm wide vetiver patch. In fig. 12  The preferential flow flux density increases linearly with root 
length density.  The proportional  increase in hedgerow denseness,  leads to  increase in height  of 
surface water and a corresponding slight increase in diffusive flux density.

Fig. 8:  Slope 5%;  N vs   80  m−1 ;  Lv  
60e04  m−2  simulation duration 10 mins;  
hinterland 100 m; rain varies

Fig. 9:  Slope 5%;  N vs 80  m−1    Lv  
60e04  m−2 ; simulation duration 10 mins;  
hinterland 100 m; rain varies.



 
Hedge effects on subsurface flow

The diffusive flow increases slightly with the rain flow rate qr , as the hv  and backwater 
push up the surface level. Lower the drain or the water table, less is the increase in diffusion due to 
surface water height.  Even with the drain at absurdly shallow position, the effect of the surface 
water  height  is  below  12%.  The  preferential  flow is  unaffected by  the  potential  effects  and is 
completely source dependent.  Thus the increase in the water level at the hedgerow increases the 
diffusion  slightly  and the  preferential  flow not  at  all.  What  about  the  water  impounded in  the 
backwater?  The backwater formed behind the hedgerow could be a source when the rain stops. The 
volume of backwater and the time to infiltrate it  are shown in fig.  13.  For rainfall at 30 cm/hour 
over 100 m hinterland, a backwater of length 54 cms and volume 72 cm2  is formed. It  takes 48 
mins ( tbi ) to empty this backwater. Diffusion takes 57.3 cm2  and preferential flow takes the 
rest  14.7 cm2 .   The  rain  inflow takes  hardly  any  time   to  fill  ( tbf )  the  backwater.  The 
backwater of volume 72 cm2 is filled in 0.86 seconds.

Overall contribution of vetiver to ground water recharge
Assuming  that  the  rain  stops  for  the  time  to  empty  the  backwater,  fig.  11 shows  what 

difference  vetiver hedgerow and its root system make to ground water recharge at rain intensity of 
15 cm/hour. Even without any  vetiver, the diffusion through the soil conveys 10.23 c m2 . With 
vetiver of root length density 60×104  m−2  and hedgerow denseness 80 m−1 , the diffusion 
increases to 10.43 cm2  because of the surface level increase due to hedgerow. The preferential 
flow by the roots now conveys additional 3.12 cm2 . From the backwater of 14.71 cm2 , 9.68 

cm2 are conveyed by diffusion and 5.03 cm2 by root film flow  if there was no rain for 16.6 
mins. Fig. 10 conveys the contribution of a vetiver hedgerow as the input rain varies. 

4 DISCUSSION

Hedge and sedimentation
The  model  with  reduced  Manning  hydraulic  radius  and  backwater  length  computed  by 

assuming a flat surface back to the normal flow surface behind can be used for the engineering 
design of hedges for erosion control on flood plains  (Dalton et al 1996). In experiments reported by 
(Hussein et al 2007, Fig 2), the initial water level behind the vetiver hedgerow is horizontal behind 

Fig  10: Slope 5%;  N vs   80  m−1 ;  Lv  
60e04  m−2 ; simulation duration 10 mins;  
hinterland 100 m; rain varies

Fig.  11:  Slope 5%;  N vs  (vetiver per m) and 
Lv  (Root Length Density) vary; simulation  

duration 10 mins; hinterland 100 m; rain 15 
cm/hour



the vetiver hedgerow till it meets the slopped water level behind. Over a time, sediments raise the 
ground surface, especially at the start of the backwater where momentum changes of the water  aid 
the  deposit  of  sediments.  But  the  experiments  concur  with our  model  where the  water  surface 
behind the vetiver hedgerow is flat as the first approximation. 

Undrained  film flow on roots
The drain below our model allows us to film flow the water without any backlash. Normally 

the film flow would quickly fill the root column with water. Unless it is removed from the root 
column, further film flow from the surface is stopped. Fortunately, the side walls on the two sides of 
the  root  column  provide  area  for  horizontal  diffusion.  In  our  model,  we  have  not  introduced 
horizontal diffusion. For vertical flows, we have seen that the preferential flow flux density qs  is 
around  5 times that of the vertical diffusive flux density qd or a vetiver patch of X cms width 
will infiltrate as much water as can be diffused by soil surface of 5X cm. Similarly we expect that a 
vertical surface of 5-10 X cms can diffuse out as much water as can be filmed in by the patch of 
width X.

Film flow on roots
Sway of the vetiver shoots in wind or water can vary the gap between the shoot and the soil. 

This can be equated with a peristaltic pump action of the soil sleeve surrounding the shoot stem.

Role of Surface Tension in film flow
The film flow equations, we used,  do not consider surface tension. Even though (Ruyer-Quil 

et al 2008) involve surface tension in the analysis, the equation (Ruyer-Quil et al 2008, eq. 4.2) 
from the first-order model does not require surface tension. It is also useful to wonder why the 
laminar film maximum velocity and thickness vary within a small range. We conjecture that it has 
something to do with surface tension. Consider the film on the outer surface of a root. The surface 
tension will try to squeeze the outer perimeter and thin the film. Intermittent feed from top, coupled 
with gravity, could lead to a peristaltic pump action on the film. When the film thickness is reduced 
by  surface  tension,  the  velocity  at  the  perimeter  reduces,  less  water  flows  down  and  so  the 
momentum balance equations will work toward increasing the thickness.  For laminar flow on the 
inner surface of a macro-pore, the surface tension would tend to increase the film thickness, leading 
to  increased  velocity,  increased  downflow  and  consequent  thinning  of  the  film.  Thus  the 
experimentally observed maximum film velocity and film thickness may be a consequence of the 
fine balance between surface tension, gravity and viscosity.   (Nimmo, J R, 2010) fix the maximum 
film velocity from observed data and then derive the film thickness. Our model suggests that it is 

Fig.  12: Slope 5% Rain 15 cm/hour over 100 m 
hinterland. Root Length Density  Lv  varies

Fig.  13: Slope 5% vary rain over 100 m 
hinterland; rain duration 10 mins; hedgerow 
denseness 80 m−1 Lv 60e04  m−2



the other way. The film thickness is the result of the interplay between the various forces and the 
velocity is the resultant of the thickness. As velocity is easier to measure than film thickness, it can 
come first. It is not really important whether the chicken comes first or the egg as long as you can 
have the egg for the breakfast! 

5 CONCLUSIONS
Preferential flow as laminar film on the surface of roots of vetiver can account for the capacity 

of  vetiver  hedgerows  to  increase  ground  water  recharge.  The  backwater  formed  by  the  dense 
hedgerow allows diffusion and preferential  flow to continue to recharge even after the rain has 
stopped. It is better that the backwater is emptied fast. Otherwise, further rain will disappear as 
runoff. It is the preferential flow that reduces the time to empty the backwater.   
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